Abstract
OATP1A2 and OATP2B1 are uptake transporters of the human organic anion transporting polypeptide (OATP) family with a broad substrate spectrum including several endogenous compounds as well as drugs such as the antihistaminic drug fexofenadine and HMG-CoA reductase inhibitors. Both transporters are localized in the apical membrane of human enterocytes. Flavonoids, abundantly occurring in plants, have previously been shown to interact with drug metabolizing enzymes and transporters. However, the impact of flavonoids on OATP1A2 and OATP2B1 transport function has not been analyzed in detail. Therefore, HEK293 cell lines stably expressing OATP1A2 and OATP2B1 were used to investigate the influence of the Ginkgo flavonoids apigenin, kaempferol, and quercetin on the transport activity of OATP1A2 and OATP2B1. K i values of all three flavonoids determined from Dixon plot analyses using BSP as substrate indicated a competitive inhibition with quercetin as the most potent inhibitor of OATP1A2 (22.0 μM) and OATP2B1 (8.7 μM) followed by kaempferol (OATP1A2: 25.2 μM, OATP2B1: 15.1 μM) and apigenin (OATP1A2: 32.4 μM OATP2B1: 20.8 μM). Apigenin, kaempferol, and quercetin led to a concentration-dependent decrease of the OATP1A2-mediated fexofenadine transport with IC 50 values of 4.3 μM, 12.0 μM, and 12.6 μM, respectively. The OATP1A2- and OATP2B1-mediated transport of atorvastatin was also efficiently inhibited by apigenin (IC 50 for OATP1A2: 9.3 μM, OATP2B1: 13.9 μM), kaempferol (IC 50 for OATP1A2: 37.3 μM, OATP2B1: 20.7 μM) and quercetin (IC 50 for OATP1A2: 13.5 μM, OATP2B1: 14.1 μM). These data indicate that modification of OATP1A2 and OATP2B1 transport activity by apigenin, kaempferol, and quercetin may be a mechanism for food–drug or drug–drug interactions in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.