Abstract

Uranyl binitrate complexes have a particular interest in the nuclear industry, especially in the reprocessing of spent nuclear fuel. The modified PUREX extraction process is designed to extract U(VI) in the form of UO2(NO3)2(L)2 as has been confirmed by extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD), and time-resolved laser-induced fluorescence spectroscopy (TRLFS) measurements. In this study, the L ligands are two molecules of N,N-di-(ethyl-2-hexyl)isobutyramide (DEHiBA) monoamide used to bind uranyl in its first coordination sphere. DEHiBA ligands can coordinate uranyl in either trans- or cis-position with respect to the nitrate ligands, and these two conformers may coexist in solution. To use luminescence spectroscopy as a speciation technique, it is important to determine whether or not these conformers can be discriminated by their spectroscopic properties. To answer this question, the spectra of trans- and cis-UO2(NO3)2(DEiBA)2 conformers were modeled with ab initio methods and compared to the experimental time-resolved luminescence spectra on UO2(NO3)2(DEHiBA)2 systems. Moreover, the hydrated uranyl binitrate UO2(NO3)2(H2O)2 complexes in the same trans and cis configurations were modeled to quantify the impact of organic DEHiBA on the luminescence properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call