Abstract

Atmospheric plasma spraying (APS) is an interesting technique to obtain nanostructured coatings due to its versatility, simplicity and relatively low cost. However, nanometric powders cannot be fed into the plume using conventional feeding systems, due to their low mass and poor flowability, and must be adequately reconstituted into sprayable micrometric agglomerates.In this work, Al2O3–13wt.%TiO2 nanostructured and submicron-nanostructured powders were deposited using APS. The feedstocks were obtained by spray drying from two starting suspensions, prepared by mixing two commercial nanosuspensions of Al2O3 and TiO2, or by adding nanosized TiO2 and submicron-sized Al2O3 powders to water. The spray-dried granules were heat-treated to reduce their porosity and the resultant powders were fully characterized.Optimization of the deposition conditions enabled the reconstituted powders to be successfully deposited, yielding coatings that were well bonded to the substrate. The coating microstructure, characterized by SEM, was formed by semi-molten feedstock agglomerates surrounded by fully molten particles that act as a binder.Moreover, microhardness, adhesion, and tribological behavior were determined, and the impact of the granule characteristics on these properties was studied. It was found that changing the feedstock characteristics allowed controlling the coating quality and properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.