Abstract

Ab initio calculations have been carried out to investigate the adsorption, dissociation, and diffusion of atomic and molecular hydrogen on the Fe-doped ZrCo (110) surface. It is found that the adsorption of H2 on doped surface seems thermodynamically more stable with more negative adsorption energy than that on the pure surface, and the dissociation energy of H2 on doped surface is much bigger therefore. However, compared with the pure system, there are fewer adsorption sites for spontaneous dissociation. After dissociation, the higher hydrogen adsorption strength sites would promote the H atom diffusion towards them where they can permeate into the bulk further. Furthermore, the ZrCo (110) surface possesses much higher hydrogen permeability and lower hydrogen diffusivity than its corresponding ZrCo bulk. Moreover, further comparison of the present results to analogous calculations for pure surface reveals that the Fe dopant facilitates the H2 molecule dissociation. Unfortunately, this does not improve the hydrogen storage performance of ZrCo alloy due to the H atom diffusion on the surface and into bulk are prevented with higher reaction energetic barriers by doping Fe. Consequently, ZrCo (110) surface modified with Fe atoms should not be preferred as a result of its terrible hydrogen permeability. A clear and deep comprehending of the inhibiting effect of Fe dopant on the hydrogen storage of ZrCo materials from the perspective of the surface adsorption of hydrogen are obtained from the present results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.