Abstract

In reptiles, the evolutionary transition from egg-laying to live-bearing is thought to involve a gradual increase in the duration of egg retention, with progressively more development occurring prior to oviposition, and culminating in the birth of fully developed offspring. However, prolonging the retention of fully-shelled eggs within the oviducts may pose serious gas-exchange problems for the embryos. Thus, evolutionary increases in the period of intrauterine retention may require correlated decreases in the thickness of eggshells and/or their degree of calcification to allow for adequate embryonic gas exchange. To test this evolutionary model, eggs of three distinct reproductive forms of the scincid lizard Lerista bougainvillii were examined to determine the evolutionary relationships between the thickness of the shell membrane, degree of eggshell calcification, and the duration of uterine egg retention. These comparisons revealed the predicted pattern of correlated shifts in eggshell morphology and embryonic stage at oviposition. Evolutionary increases in the duration of egg retention were accompanied by decreases in the thickness of the eggshell membrane and degree of eggshell calcification. This evolutionary model suggests that there may be a tradeoff between the advantages of extended egg retention and the disadvantages of a thinner eggshell. On the basis of this tradeoff, I propose that oviparous taxa with relatively thin eggshells may be preadapted to evolve viviparity. Comparative examination of the limited data available on eggshell thickness in lizards supports this possibility. © 1996 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call