Abstract
A three-dimensional Monte Carlo code is used to compute the ultraviolet zenith sky radiance; the code is validated by comparison with a successive-orders-of-scattering code. The amplifications of global irradiance, diffuse irradiance, and zenith radiance that are due to multiple reflectances between a snow-covered ground surface and the atmosphere are compared. For an inhomogeneous Lambertian surface, the contribution of the site environment is analyzed; it depends slightly on the atmospheric turbidity and on the surface reflectance distribution. However, in most cases one can expect approximately 12-15% of the reflected photon contribution to come from within 1 km about the observation site, 25-30% come from areas from 1 to 5 km from the site, 43-47% from 5 to 30 km, and still 10-15% reflected at larger distances. An average contribution function is proposed and used to compute an effective reflectance, which permits retrieval of the sky radiance within 2-4% with a one-dimensional model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.