Abstract

Abstract The controllable speed casing is a novel casing treatment approach that makes partial casing rotate at adjustable and proper speed to achieve stability expansion. Structural parameters of casing treatment are found to influence the effect of stability expansion by many studies. In this paper, the effect of the ending position of the rotatable ring in controllable speed casing on the tip leakage flow and the stability expansion was studied numerically. The results show that when the rotatable ring rotates at 30 % and 50 % rotor design speed, the controllable speed casing achieves the stability expansion of the compressor rotor no matter where the ending position is. The upstream movement of the ending position decreases the axial pressure gradient in the middle and rear of the tip passage. It pushes the shock wave downstream, which reduces blockage region at tip leading edge. The upstream movement of the ending position contributes to an approximately linear increase in the stable operating margin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call