Abstract

DSA-type Ti/RuxSn1-xO2 electrodes were prepared by thermal decomposition method as photoelectrocatalysts (PECs) and extensively characterized by various sophisticated techniques. First-principles calculations was employed to study the effects of Ru content on the electronic structures of the RuxSn1-xO2 coatings. The photoelectric-synergistic catalytic activity of the Ti/RuxSn1-xO2 electrodes was evaluated for the degradation of methyl orange (MO) in aqueous solution. The results show that the RuO2−SnO2 solid solution could be formed. The band gaps of the RuxSn1-xO2 coatings gradually decreased and eventually turned into metallic conductivity with the increase of ruthenium content. As a PEC electrode, reducing band gap is helpful to improve electronic conductivity and the electrocatalytic activity, but not always advantageous to increase the photocatalytic activity. Because too narrow band gap will sacrifice the photogenerated charge carriers and thus reduce photocatalytic activity of the electrode. In our experiments, the rate constant of Ti/Ru0.05Sn0.95O2 electrode increased with increasing Ru content and exhibited the maximum rate for 5% Ru loading. The stability test showed the photoelectrocatalytic activity of the Ti/Ru0.05Sn0.95O2 electrode almost had no attenuation after 100h photoelectrolysis, revealing that this electrode has good long-term stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.