Abstract

In the preparation process for advanced ceramics, how to reduce the sintering temperature, shorten the processing time and refine grains is the key to obtaining high-performance ceramic materials. The flash sintering (FS) provides an effective method to solve this issue. Here, (Zr + Ta) co-doped TiO2 colossal permittivity ceramics were successfully fabricated by conventional sintering (CS) and flash sintering under electric fields from 500 V/cm to 800 V/cm. The flash behavior, sintered crystal structure and microstructure, dielectric properties, and varistor characteristics were systematically investigated. The effects of the applied electric fields on the above behaviors were discussed. The results show that flash sintering can reduce the sintering temperature by 200 °C, decrease the processing time by 10 times and reduce grain sizes in TiO2 ceramics. All sintered samples were single rutile structures. Flash sintering led to similar electrical properties to conventional sintering. In the flash-sintered samples, with increasing the electric field, the permittivity of co-doped TiO2 ceramics increased at a frequency of 103–104 Hz. The flash-sintered sample under an electric field of 800 V/cm possessed the best comprehensive properties, a dielectric permittivity of >105, a dielectric loss of ∼0.77 at 103 Hz, and a nonlinear coefficient of 5.2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.