Abstract
A Monte Carlo study was carried out to determine the influence of the effective scattering mass (M e) of the atoms on the neutron density profile inside and outside the sample illuminated by a thermal neutron beam as in large-sample prompt-gamma neutron activation analysis (LS-PGNAA). From theory it is known that the spatial neutron density distribution (n(r)) inside a large sample is not the same for atoms with the same macroscopic scattering and absorption cross-section (Σ s and Σ a) but different M e, due to anisotropic scattering at low M e. The probability of neutron absorption in the sample was found to be the same for materials with equal Σ s and Σ a but different M e, even though the neutron density distribution in the sample was found to change slightly. In view of typical sample, collimator and detector dimensions, it is concluded that M e does not need to be taken into account in a correction method for neutron self-shielding in LS-PGNAA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.