Abstract

The influence of the dynamic plasma shielding on the collisional entanglement fidelity is investigated in strongly coupled semiclassical plasmas. The partial wave analysis with the effective dynamic screening length is employed to obtain the dynamic entanglement fidelity as a function of collision energy, de Broglie wavelength, Debye length, and thermal energy. The results show that the collisional entanglement fidelity increases with increasing plasma temperature as well as de Broglie wavelength and, however, decreases with an increase of the Debye length. It is also found that the dynamic screening effect suppresses the collisional entanglement fidelity in strongly coupled semiclassical plasmas. In addition, it is found that the entanglement fidelity decreases with increasing de Broglie wavelength and, however, increases with increasing thermal energy. It is also found that the thermal effect on the entanglement fidelity would be more significant in the domain of low-collision energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.