Abstract

We investigate the influence of the effect of dynamic polarization of the carbon atom valence electrons on the angular distributions of protons channeled in (6, 4)@(11, 9) double-wall carbon nanotubes. The proton velocities are 3 and 5a.u., corresponding to energies of 0.223 and 0.621MeV, while the nanotube lengths are 0.1–0.2μm. The interaction between a proton and the nanotube atoms is described by the Doyle–Turner potential whereas the image force acting on the proton is calculated by a two-dimensional hydrodynamic model of the dynamic response of the nanotube valence electrons. The angular distributions of channeled protons are generated by a computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Our analysis shows that the image force induces additional extrema in the proton deflection functions, giving rise to the rainbow maxima in the angular distributions that do not exist when the proton is subject to the atomic force only. These maxima could be used to probe the total interaction potential in proton channeling in nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.