Abstract

A systematic structural investigation of R-phenyl-substituted 2,2′:6′,2″-terpyridines, a family of mono- and bifunctional charge transfer (CT)-operated fluorescent reporters for protons and metal ions, is presented. These molecules are equipped with non-binding and analyte coordinating donor substituents R (R = CF 3, H, OMe, OH, DMA, A15C5 equaling monoaza-15-crown-5) of various donor strength and display CT-controlled spectroscopic properties and communication of analyte–receptor interactions. The crystal structures of the neutral fluorescent probes are compared to the structures of their terpyridine-alkylated or -protonated counterparts that represent model systems for acceptor protonation or cation coordination. The aim is here a better understanding of the complexation-induced structural and spectroscopic changes and the identification of common packing motifs of bpb-R thereby taking into account the importance of terpyridine building blocks for the construction of supramolecular systems and coordination arrays revealing π–π interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.