Abstract

The purpose of this work is to evaluate the influence of the chromatin density in the number of clustered damages created by protons in different types of cell nuclei. For this, two detailed geometrical target models representing a fibroblast and an endothelium cell nucleus in the G0/G1 phase were implemented as the target of proton irradiations in a Monte Carlo simulation code based on the GEANT4 toolkit. The DBSCAN clustering algorithm was then used in order to determine clustered damages that could be potential simple or double strand breaks on the DNA. The influence of the DNA density has been studied by comparing the results on the relative quantification of these clustered damages. Our results show that the quantity and the complexity of clustered damages increase with increasing DNA density and thus they can depend on the cell line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.