Abstract

The two new MnIII dinuclear compounds [{Mn(H2O)(phen)}2(μ-4-CH3C6H4COO)2(μ-O)](ClO4)2·3CH3CN·H2O (1·3CH3CN·H2O) and [{Mn(H2O)(phen)}(μ-O)(μ-2-BrC6H4COO)2{Mn(NO3)(phen)}]NO3 (2) have been synthesized. Their structural data reveal significant differences in the shape of the coordination octahedron around the MnIII ions in both compounds. The different distortions from ideal geometry incite a very different magnetic behavior, affecting both the zero-field splitting parameters of the MnIII ions (DMn and EMn) and the magnetic interaction between them. Compound 1, with elongation in the monodentate ligand direction, shows antiferromagnetic coupling (ground state S = 0) and local DMn < 0, while compound 2, with compression in the oxo bridge direction, displays a ferromagnetic interaction (ground state S = 4) and local DMn > 0. Theoretical CASSCF and DFT calculations corroborate the different magnetic anisotropy and exchange coupling found in both compounds. Moreover, with the help of theoretical calculations, some interesting magneto-structural correlations have been found between the degree of distortion of the coordination octahedra and the magnetic coupling; it becomes more antiferromagnetic when the elongation parameter, Δ, in absolute value is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.