Abstract

Seismically induced landslides can often cause severe human and economic losses. Therefore, it is worth assessing the seismic performance of slopes through a reliable quantification of the permanent displacements induced by seismic loading. This paper presents a new semiempirical relationship linking the permanent earthquake-induced displacements of slopes to one or two synthetic ground motion parameters developed considering the Italian seismicity, and a comparison with existing simplified displacement models is illustrated. Once combined with a fully probabilistic approach, these relationships provide a useful tool for practicing engineers and national agencies for a preliminary estimate of the seismic performance of a slope. In this perspective, the predictive capability of different semiempirical relationships is analyzed with reference to the permanent displacements evaluated for the Italian seismicity assimilating the slope to a rigid body and adopting the Newmark integration approach. The consequences of the adoption of these relationships on the results of the probabilistic approach are illustrated in terms of displacement hazard curves and hazard maps for different slope scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.