Abstract

We examine the influence of the dispersion relation on the Unruh effect by Lorentz boosting the phase of Minkowski vacuum fluctuations endowed with an arbitrary dispersion relation. We find that, unlike what happens with a linear dispersion relation exhibited by massless fields, thermality is lost for general dispersion relations. We show that thermality emerges with a varying "apparent" Davies-Unruh temperature depending on the acceleration of the observer and on the degree of departure from linearity of the dispersion relation. The approach has the advantage of being intuitive and able to pinpoint why such a loss of thermality occurs and when such a deviation from thermality becomes significant. We discuss the link of our results with the well-known fundamental difference between the thermalization theorem and the concept of Rindler noise. We examine the possible experimental validation of our results based on a successful setup for testing the classical analogue of the Unruh effect recently described in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.