Abstract

In this paper we study the quantum Zeno effect using the irreversible model of the measurement. The detector is modeled as a harmonic oscillator interacting with the environment. The oscillator is subjected to the force, proportional to the energy of the measured system. We use the Lindblad-type master equation to model the interaction with the environment. The influence of the detector's temperature on the quantum Zeno effect is obtained. It is shown that the quantum Zeno effect becomes stronger (the jump probability decreases) when the detector's temperature increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call