Abstract
In order to meet the ever-increasing demand for high quality and low cost products, machining processes with geometrically defined cutting edges such as high speed cutting, or hard turning are being used. Due to the fact that cutting is accomplished through a physical interaction between the cutting edge and the workpiece, the characteristics of the cutting edge itself play a key role in influencing the machining process, which determines the product quality and the tool life. As a result, cutting edge design has attracted the focus of many researchers, and crucial improvements have been achieved. Rounded cutting edges have been found to improve the tool life, and the product quality. However, to better understand the impact of prepared cutting edges on the aspects of the machining processes, and to produce tailored cutting edges for specific load profiles, further investigation on the influence of the cutting edge design on the machining processes needs to be carried out. In this study, the effect of symmetrically and asymmetrically rounded cutting edge on the material in the vicinity of the cutting edge has been investigated using finite element simulation techniques. The results obtained from this investigation show that process forces and material flow under the flank face are mainly influenced by the micro-geometry Sα. However, the magnitude and the location of maximum nodal temperature are influenced by Sα as well as Sγ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.