Abstract
We report on the influence of the cut-off wavelength on the super- continuum generation in which the spectral broadening occurs only on the blue side of the pump wavelength. As a consequence a limit to the extent of the super- contiuum is set and thus a way for tailoring the broadened spectrum according to a peculiar application is provided. The experiment consists of launching a train of femtosecond pulses into a 45-cm-long span of a photonic crystal fiber (PCF) by means of an offset pumping technique that can selectively excite higher-order modes. The PCF presents a wide range of wavelengths in which the fundamental mode experiences normal dispersion, whereas higher-order modes, LP11 and LP21 propagate in the anomalous dispersion regime, generating a supercontinuum based on the soliton fission mechanism. When exciting LP21 we are able to generate an almost purely visible supercontinuum even with pulse energies below 100 pJ. Our experimental results are compared with the numerical solutions of the nonlinear Schrodinger equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.