Abstract
The influence of the neighbouring atomic-columns in determining the composition at atomic column scale of quaternary semiconductor compounds, using simulated HAADF-STEM images is evaluated. The InAlAsSb alloy, a promising material in the photovoltaic field, is considered. We find that the so called 'crosstalk' effect plays an important role for the aimed compositional determination. The intensity transfer is larger from neighbouring atomic columns with higher average Z, and towards atomic columns with smaller Z. Our results show that in order to obtain precise information on the column composition, the HAADF-STEM intensities of both columns need to be taken into account simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.