Abstract
The influence of the content of carbon nanofillers (multi-and single-wall nanotubes) on the thermophysical properties of epoxy nanocomposites was investigated on the temperature range from −150 to 150°C. A “plateau” was found to exist in the concentration dependence of thermal conductivity on the concentration interval from 0.1 to 1.0 wt.% carbon nanotubes (CNTs). The thermal conductivity of the CNT composites exceeded that of pure epoxy resin by about 40%. A further increase in CNT content de creased the conductivity, owing to increasing interfaces between the two phases and the additional thermal resistance caused by phonon scattering on them. It is found that the temperature interval of transition of the composite from a glassy to a viscoelastic state greatly depends on the filler type and concentration. There exists a critical concentration at which a drop in the glass-transition temperature by 30% can be observed. The reason is the undercure of binder as a result of interaction between CNTs and epoxy macromolecules, which reduces the cross-linking density of structure of the polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.