Abstract

The performance of an internal-combustion engine is directly related to the fuel quantity that can react with the oxygen in the air during the exothermic oxidation step, also called combustion. Thus, the amount of fuel introduced is intrinsically linked to the air volume that can be admitted into the cylinder (air filling of the cylinder). Hence keeping the air in the cylinder is one of the most important concepts to predict in simulations. Nevertheless, the phenomenon of air filling depends on many parameters. Also, the discharge coefficients, and the impact of the piston presence near the valves on the flow, during valve overlap are investigated. For this, a digital flow bench is constructed to reproduce a series of tests carried out on a flow test bench functioning as a result of the reduction in the pressure. In this paper, the engine studied is a 125 cm3 single-cylinder four-stroke atmospheric type with two valves. Thus, the idea of this paper is to treat the case of engines with large valve overlaps as small engines or engines with variable valve timing. First, traditional tests through a single valve are performed. The forward and reverse directions are systematically tested to ensure proper operation of the digital testing, and to determine the differences between tests and simulations in the case of conventional configurations. Then, the flow through the entire cylinder head, i.e. the intake valve–cylinder with piston–exhaust valve system, is tested and studied. The aim is to compare the results obtained by the tests and the simulations during the valve overlap period. Significant differences were highlighted between the rates measured in one-dimensional simulations and in the tests. It was noteworthy that the one-dimensional code overestimated the mass passing through the system during valve overlap by about one fifth of the estimated mass passing through the system from the results obtained with the test rig.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call