Abstract
The present work focuses on the five different chemical mechanisms coupled with probability density function (PDF) model to represent the local extinction and re-ignition flame characteristics of the well-known Sandia Flames D–F. These five mechanisms span from the Foundational Fuel Chemistry Model (FFCM) mechanism involving 38 species to the Glarborg mechanism involving 150 species. The coupled computational fluid dynamics (CFD) and transported-PDF method are used for the turbulence modeling, and the reaction–diffusion manifolds (REDIMs) are used as an advanced technique for the simplification of chemical kinetics and to speed up the numerical computation. It is demonstrated that these chemical mechanisms have an ability to represent the degree of local extinction and re-ignition accurately. Furthermore, the sensitivity analysis shows that the degree of local extinction is very sensitive to only several key elementary reactions, and an analysis on the turbulence–chemistry interaction investigates the influence of these elementary reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Brazilian Society of Mechanical Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.