Abstract
We examined the relationship between the spindle orientation and the determination site of cytokinesis in brown algal cells using polyspermic zygotes of Scytosiphon lomentaria. When two male gametes fuse with one female gamete, the zygote has two pairs of centrioles derived from male gametes and three chloroplasts from two male and one female gametes. Just before mitosis, two pairs of centrioles duplicate and migrate towards the future mitotic poles. Spindle MTs develop and three or four spindle poles are formed. In a tri-polar spindle, one pair of centrioles shifts away from the spindle, otherwise, two pairs of centrioles exist adjoining at one spindle pole. Chromosomes arrange at several equators of the spindle. As a result of these multipolar mitoses, three or four daughter nuclei developed. Subsequently, these daughter nuclei form a line along the long axis of the cell. Cell partition always takes place between daughter nuclei, perpendicular to the long axis of the cell. Three or four daughter cells are produced by cytokinesis. Some of the daughter cells after cytokinesis do not have a nucleus, but all of them always contain the centrosome and chloroplast. Therefore, the number of daughter cells always coincides with the number of centrosomes or microtubule organizing centers (MTOCs). These results show that the cytokinetic plane in the brown algae is determined by the position of centrosomes after mitosis and is not dependent on the spindle position.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.