Abstract

ObjectiveIn arterial spin labeling (ASL), the cardiac cycle might adversely influence signal-stability by varying the amount of label created, labeling efficiency and/or transport times. Due to the long labeling duration in pseudo-Continuous ASL (pCASL), the blood labeled last contributes most to the ASLsignal. The present study investigated, using numerical simulations and in vivo experiments, the effect of the cardiac cycle on pCASL, thereby focusing on the end-of-labeling.Materials and methodsIn the in vivo experiments the end-of-labeling was timed to a specific cardiac phase while a long labeling duration of >7 s was used to isolate the influence of the lastly labeled spins on ASL-signal stability.ResultsSimulations showed dependence of the ASL-signal on the cardiac phase of the end-of-labeling, and that the variation in signal was more pronounced at lower heart rates. The ASL-signal variation was small (~4%), but could be effectively reduced by simulated end-of-labeling triggering. In vivo, no difference in mean CBF (p = 0.58) nor in CBF temporal-STD (p = 0.44) could be detected between triggered and non-triggered acquisitions.ConclusionInfluence of the cardiac cycle on pCASL-signal stability is small and triggering the start-of-labeling and end-of-labeling can be considered not to have practical implications to improve stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.