Abstract
Cup-stacked carbon nanotubes (CSCNT) with different surface properties were used for the non-aqueous Li–O2 battery cathodes, and then examined at high magnification to understand how the discharge products were deposited on the cathode. As-prepared CSCNT based cathode had many reactive edges consisting of truncated conical graphene layers. After discharge, discharge products with average particle size 50nm covered a nanotube, resulting in a layer-like texture. On the other hand, a heat-treated CSCNT based cathode was composed of edges terminated by graphitization of several graphene layers. After discharge, the size of the products was almost the same but the products were agglomerated, forming a bulky morphology. It was, thus, found that the carbon surface structure was closely related with the morphology of the cathode deposits after discharge. First principles calculations also indicated that no terminated edges acted as preferential active sites in adsorbing and storing the reaction species. It was, therefore, concluded that the active edges of the carbon surface were indispensable for controlling the morphology of cathode deposits and improving the battery performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.