Abstract
We investigated the formation of various micelle shapes of lipid-like amphiphilic AB(2) miktoarm star copolymers in a solution, by performing dissipative particle dynamics simulations. AB(2) miktoarm star copolymer molecules are modeled with coarse-grained structures that consist of a relatively hydrophilic head (A) group with a single arm and a hydrophobic tail (B) group with double arms. A decrease in the hydrophilicity of the head group leads to a reduction of the polymer-solvent contact area, causing cluster structure changes from spherical micelles to vesicles. Consequently, a spherical exterior with multi-lamellar or cylindrical phase interior structures forms under poor solvent conditions without the introduction of spherical hard-wall containers. Furthermore we observed that, for small head group lengths, vesicles were formed in much wider range of solvent-head interaction strength than for long head groups, indicating that molecules with short head group offer a superior vesicle forming property. A phase diagram, the structure and kinetics of the cluster formation, a density profile, and a detailed shape analysis are presented to discuss the molecular characteristics of potential candidates for drug carriers that require superior and versatile vesicle forming properties. We also show that, under certain solvent-hydrophilic head group interaction conditions, initially formed cylindrical micelles transform to bilayer fragments through redistribution of copolymers within the cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.