Abstract

We report the optical properties of GaSbBi layers grown on GaSb (100) substrates with different bismuth contents of 5.8 and 8.0% Bi. Fourier-transform photoluminescence spectra were determined to identify the band gaps of the studied materials. Further temperature- and power-dependent photoluminescence measurements indicated the presence of localized states connected to bismuth clustering. Finally, time-resolved photoluminescence measurements based on single-photon counting allowed the determination of characteristic photoluminescence decay time constants. Because of the increasing bismuth content and clustering effects, an increase in the time constant was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call