Abstract

Physical mechanisms which limit the squeezing bandwidth in a heterojunction light-emitting diode (LED) have been extensively studied both theoretically and experimentally. It is proven that our experimental results of pump-current dependence of the squeezing bandwidth in the constant-current-driven heterojunction LED at room temperature cannot be explained by previous theoretical predictions. We present a theoretical framework, including the effects of a microscopic backward-pump (BP) process, generally applicable to a heterojunction LED. Parameters describing the relative significance of the BP process are determined by the measurements of current-versus-voltage characteristic and differential resistance of the LED, independent of the noise measurements. As a consequence, the experimental results can be explained by our model in a unified manner over a whole range of injection current, and it is clarified that the pump situation of the LED moves continuously from thermionic emission to diffusion limits with increasing pump current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.