Abstract

In this investigation, calcium-deficient hydroxyapatite (CDHA) nanocrystals with needle-like geometry were synthesized and incorporated with Poly(methyl methacrylate), PMMA, to form CDHA-PMMA nanocomposites. Rheological behaviors of the PMMA-CDHA melting suspensions were systematically investigated in terms of solid loading and aspect ratio of the CDHA nanoparticles. The maximum solid loadings of nano-CDHA particles with aspect ratios of 7.2, 10.4, and 17 were determined to be 28, 31, and 57%, respectively. An increase in solid concentrations causes pronounced shear-thinning behavior. This result suggests that a strong interaction, including Van der Waals attraction and mechanical interlocking, between the nano-CDHA particles makes the nanocomposite mixture more non-Newtonian. Furthermore, it was found that packing efficiency and yield strength in the suspension were strongly influenced by the aspect ratio, especially above the critical value of 8.8. The obtained critical aspect ratio and solid content provide not only appropriate design in the PMMA-CDHA polymeric suspension for fabrication process but also optimal conditions for the fabrication of orthopedic devices via injection molding or extrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.