Abstract

The influence of the current density on the chemical degradation processes of a phosphorescent OLED based on Ir(ppy)3 emitter is investigated by laser-desorption/ionization time-of-flight mass spectrometry. Comparing the mass spectra collected for unaged and aged OLEDs, the formation of different chemical degradation products could be detected and are identified as dimer and trimer products of BPhen as well as Cs-adducts of these polymers and the well-known emitter-BPhen-adduct ([Ir(ppy)2BPhen]+). In this work, we will show that the formation of [Ir(ppy)2BPhen]+ depends strongly on the amount of the charge flowing through the device, where the other degradation products show a much different behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.