Abstract

Characteristics of ferroelectric thin films of niobium-doped strontium–bismuth tantalate (SBTN), which were deposited by magnetron sputtering on Pt/TiO2/SiO2/Si substrates, are investigated. To form the ferroelectric structure, deposited films were subjected to subsequent annealing at 700–800°C in an O2 atmosphere. The results of X-ray diffraction showed that the films immediately after the deposition have an amorphous structure. Annealing at 700–800°C results in the formation of the Aurivillius structure. The dependences of permittivity, residual polarization, and the coercitivity of SBTN films on the modes of subsequent annealing are established. Films with residual polarization 2Pr = 9.2 µC/cm2, coercitivity 2Ec = 157 kV/cm, and leakage current 10–6 A/cm2 are obtained at the annealing temperature of 800°C. The dielectric constant and loss tangent at frequency of 1.0 MHz were e = 152 and tan δ = 0.06. The ferroelectric characteristics allow us to use the SBTN films in the capacitor cell of high density ferroelectric random-access non-volatile memory (FeRAM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.