Abstract

A set of TiO2 samples with different anatase/rutile ratios was prepared by calcinations at different temperatures from commercial photocatalyst Degussa P25. The effects of the two crystalline phases of titanium (IV) oxide on the photocatalytic activity in gaseous phase through oxidation of light hydrocarbons were studied. Crystalline phase transformation from anatase to rutile occurred at 700°C for P25. Results indicate that samples with higher anatase/rutile ratios presented higher intrinsic activities for the photodegradation of a propane/isobutane/butane (40/35/25 %V) mixture. However, the activity did not totally disappear after complete crystalline transformation from anatase to rutile, indicating that the pure rutile phase also presents photoactivity. During the photocatalytic reaction of TiO2 samples, a linear dependence was found between the inverse of the intrinsic reaction rate constant (k intrinsic) and the water adsorption capacity in the surface (WAPS) of the synthesized TiO2 catalyst. The thermal treatment used to induce the formation of rutile by calcination would presumably reduce water adsorption capacity and surface area, leading to a decrease in photocatalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call