Abstract

To investigate the impact of the lateral deflection of toothbrush bristles (amplitude) of three side-to-side toothbrushes for noncontact biofilm removal in an artificial interdental space model. A three-species biofilm (Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sanguinis) was formed in vitro on protein-coated titanium disks. A flow chamber system was combined with a static biofilm growth model. The amplitudes of three commercial side-to-side toothbrushes were evaluated by means of a dose response analysis. The amplitudes were decreased in steps (100%, 85%, 70%, 55%, and 40%). Subsequently, the biofilm-coated substrates were exposed to the toothbrushes. The biofilms were analyzed with confocal laser scanning microscope images and measured using volumetric analyses. The predictability of interdental biofilm reduction differed among the toothbrushes. A lower variety in the results of repeated experiments occurred in toothbrush C compared to toothbrushes A and B. Toothbrush C obtained highest percentage of biofilm reduction by 85% of amplitude power setting (median biofilm reduction 76%). Decreasing the amplitude from 85 to 40% resulted in reduced biofilm reduction (p = 0.029). In contrast, no significance could be observed for the differences of the tested amplitudes within toothbrushes A and B (p > 0.05). Between the toothbrushes, a significant difference in interdental biofilm reduction was found between C-A (p = 0.029) and C-B (p = 0.029) with amplitude of 85%. The amplitude of one of the investigated side-to-side toothbrushes affected the biofilm reduction predictably in an interdental space model. Within certain toothbrushes, a specific amplitude power setting may demonstrate beneficial effects on noncontact biofilm removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.