Abstract

The stability of human erythrocytes to sodium dodecyl sulfate (SDS) was assessed spectrophotometrically in the presence of different concentrations of bovine serum albumin (BSA) and at different temperatures (27-45 °C). The absorbance at 540 nm (A₅₄₀) was correlated with the SDS concentration by sigmoidal regression based on the Boltzmann equation. Erythrocyte stability was characterized on the basis of the SDS concentration that induces hemolysis in 50% of the cells (D₅₀). Progressive increases in the albumin concentration led to increases in the D₅₀ value. The protective effect of BSA against SDS-induced hemolysis was attributed to the binding of the surfactant to the hydrophobic binding sites of this protein. The D₅₀ values decreased sigmoidally with an increase in the temperature. This trend, which could not be explained by changes in the spectral properties of hemoglobin, maybe due to heterogeneity in the erythrocyte population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.