Abstract

Tensile properties, high cycle fatigue strength, and fatigue crack propagation behavior were evaluated on highly textured Ti-6Al-4V material to investigate the influence of a preferred crystallographic orientation on mechanical properties. Thermomechanical treatments were used to develop three different textures: a basal, basal/transverse, and transverse type, all of which exhibited the same homogeneously equiaxed microstructure. The Young’s modulus was found to vary between 107 and 126 GNm-2, and yield strength changed from 1055 to 1170 MNm-2. Ductility was only slightly affected by texture. High cycle fatigue and fatigue crack growth measurements were performed in vacuum, laboratory air, and a 3.5 pct NaCl solution. It is shown that laboratory air can be regarded as a quite corrosive environment. In vacuum the highest fatigue strength values were measured whenever loads were perpendicular to basal planes. However, these conditions had the highest susceptibilities to air and 3.5 pct NaCl solution environments. Nearly no influence of texture on fatigue crack propagation was found in vacuum, but in a corrosive environment crack growth parallel to (0002)-planes was much faster than perpendicular to these planes. To explain the corrosive effect on the fatigue properties of the textured material hydrogen is thought to play a key role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.