Abstract

The influences of tetraborate anions on manganese electrodeposition in an anion-exchange membrane electrolysis reactor were investigated. The experimental results of manganese electrodeposition indicate that a certain amount of tetraborate anions can increase cathode current efficiency and initial pH 7.0–8.0 is suitable for high cathode current efficiency. X-ray diffraction (XRD) and scanning electron microscope (SEM) analysis show the nanocrystalline structure and impact morphology of electrodeposited manganese. The purity of electrodeposited manganese is above 99.88 %. The tests of tetraborate anions on buffer capacity (β) and pH value of the electrolyte near the cathode surface confirm that tetraborate anions facilitate manganese electrodeposition. Tetraborate anions can improve concentration polarization of Mn2+ ions and then increase the overpotential of hydrogen evolution reaction. Therefore, ammonium tetraborate can reduce the hydrogen embrittlement, pore, and pitting negative effect on electrodeposit surface, to improve the corrosion resistance of electrodeposited manganese. After tetraborate anions being added in electrolyte, weight loss measurement indicates that the corrosion resistance of electrodeposited manganese is improved. Electrochemical measurements testify that corrosion resistance of electrodeposited manganese containing tetraborate anions in electrolyte is reflected by less negative corrosion potential and higher impedance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call