Abstract

Material properties, such as hardness, yield strength, and ductility, depend on the microstructure of the material. If the microstructural organization can be quantified nondestructively, for example, with ultrasonic scattering techniques, then it may be possible to predict the mechanical performance of a component. Three-dimensional digital microstructures have been increasingly used to investigate the scattering of mechanical waves within a numerical framework. These synthetic microstructures can be generated using different tessellation algorithms that result in different grain shapes. In this study, the variation of ultrasonic scattering is calculated for microstructures of different morphologies for a nickel polycrystal. The ultrasonic properties are calculated for the Voronoi, Laguerre tessellations, and voxel-based synthetic microstructures created by DREAM.3D. The results show that the differences in the two-point statistics and ultrasonic attenuation for different morphologies become more significant at wider size distributions and higher frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call