Abstract

Better understanding of the fate and persistence of trace organic contaminants of emerging concern (CEC) in agricultural soils is critical for assessing the risks associated with using treated wastewater effluent to irrigate crops and land application of wastewater biosolids. This study reports on the influence of prevailing terminal electron-accepting processes (TEAPs, i.e., aerobic, nitrate-reducing, iron(III)-reducing, and sulfate-reducing conditions) and exposure to a mixture of nine trace CEC (90 ng/g each) on both the microbial community structure and CEC degradation in agricultural soil. DNA analysis revealed significant differences in microbial community composition following establishment of different TEAPs, but no significant change upon exposure to the mixture of CEC. The largest community shift was observed after establishing nitrate-reducing conditions and the smallest shift for sulfate-reducing conditions. Two of the CEC (atrazine and sulfamethoxazole) showed significant degradation in both bioactive and abiotic (i.e., sterilized) conditions, with half-lives ranging from 1 to 64 days for different TEAPs, while six of the CEC (amitriptyline, atenolol, trimethoprim, and three organophosphate flame retardants) only degraded in bioactive samples, with half-lives ranging from 27 to 90 days; carbamazepine did not degrade appreciably within 90 days in any of the incubations. Amplicon sequence variants (ASVs) from Firmicutes Hydrogenispora, Gemmatimonadetes Gemmatimonadaceae, and Verrucomicrobia OPB34 soil group were identified as potentially responsible for the biodegradation of organophosphate flame retardants, and ASVs from other taxa groups were suspected to be involved in biodegrading the other target CEC. These results demonstrate that CEC fate and persistence in agricultural soils is influenced by the prevailing TEAPs and their influence on the microbial community, suggesting the need to incorporate these factors into contaminant fate models to improve risk assessment predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call