Abstract

As the era of nanoelectronics is dawning, CNT (carbon nanotube), a one-dimensional nano material with outstanding properties and performances, has aroused wide attention. In order to study its optical and electrical properties, this paper has researched the influence of tension-twisting deformation, defects, and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method. Our findings show that if tension-twisting deformation is conducted, then the geometric structure, bond length, binding energy, band gap and optical properties of B, N doped carbon nanotube superlattices with defects and mixed type will be influenced. As the degree of exerted tension-twisting deformation increases, B, N doped carbon nanotube superlattices become less stable, and B, N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations. Proper tension-twisting deformation can adjust the energy gap of the system; defects can only reduce the energy gap, enhancing the system metallicity; while the mixed type of 5% tension, twisting angle of 15° and atomic defects will significantly increase the energy gap of the system. From the perspective of optical properties, doped carbon nanotubes may transform the system from metallicity into semi-conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call