Abstract

Plasminogen is known to undergo an extremely large conformational change when it binds ligands; the two well-established conformations are either closed (absence of external ligand) or open (presence of external ligand). We show here that plasminogen is more complicated than can be accommodated by a two-state, closed/open, model. Temperature changes induce large structural changes which can be detected with either dynamic light scattering or analytical ultracentrifugation. The temperature-induced changes are not related to the classical closed/open conformational change since both closed and open forms of the protein are similarly influenced. It appears as though the packing density of the protein increases as the temperature is raised. Over the range 4-20 degrees C, the Stokes' radius of the classical closed plasminogen goes from 4.7 to 4.2 nm, and that of the classical open form goes from 5.55 to 5.0 nm. These changes in packing can be rationalized if temperature change induces a large conformational change and if this is accompanied by a large change in hydration, by a change in solute binding, or by a change in the total void volume of the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call