Abstract

This paper presents the three-point bending properties of 3D needle-punched composites with two fiber architectures at room and elevated temperatures. The influences of temperature and fiber architectures on the load/deflection curves, bending strength and bending stiffness are analyzed. Macro-Fracture morphology and SEM micrographs are examined to understand the damage and failure mechanism. The results show that the bending properties of plain structure needle-punched composites are superior to those with non-woven structure. Meanwhile, the bending properties of composites decrease significantly with the increase of testing temperature. Moreover, the damage and failure patterns of composites vary with fiber architecture and testing temperatures. For the plain structure, 90 ° and 0 ° fiber bundles can bear the load together. At room temperature, the composite shows brittle fracture feature and exhibits local damage with matrix cracking, breakage and tearing of the fibers. While at a higher temperature, the composite shows less fracture and becomes more softened and plastic. It damages with matrix cracking, falling off and plastic deformation, fiber layer/web delaminating, and interface debonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call