Abstract

A fluidized particle single-tube solar receiver has been tested for investigating the gas-particle characteristics that enable the best operating conditions in a commercial-scale plant. The principle of the solar receiver is to fluidize the particles in a vessel – the dispenser – in which the receiver tube is plunged. The particles are flowing upward in the tube, irradiated over 1-meter height, by applying an overpressure in the dispenser. Experiments with a concentrated solar flux varying between 188 and 358 kW/m² are carried out, and the particle mass flux varied from 0 to 72 kg/(m²s). The mean particles and external tube wall temperatures in the irradiated zone are heated from the ambient to respectively 700°C and 940°C. It is shown that the temperature rise leads to a decrease of the particle volume fraction. Furthermore, a self-regulation of the system is evidenced with a short transient regime. This characteristic is essential from the operational viewpoint. The thermal efficiency of the receiver increases with the particle flow rate, reaching between 60 and 75% above 30 kg/(m²s). Several fluidization regimes are identified thanks to pressure signal analyses, like slugging, turbulent and fast fluidization, showing that regimes transitions are strongly affected by the temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call