Abstract

BackgroundThe free-living marine flatworm Macrostomum lignano is a powerful model organism for use in studying mechanisms of regeneration and stem cell regulation due to its combination of biological and experimental properties, including the availability of transgenesis methods, which is unique among flatworm models. However, due to its relatively recent introduction in research, many aspects of this animal’s biology remain unknown. One such question is the influence of culture temperature on Macrostomum biology.ResultsWe systematically investigated how different culture temperatures affect development time, reproduction rate, regeneration, heat shock response, and gene knockdown efficiency by RNA interference (RNAi) in M. lignano. We used marker transgenic lines to accurately measure the regeneration endpoint, and to establish the stress response threshold for temperature shock. We found that compared to the culture temperature of 20 °C commonly used for M. lignano, temperatures of 25 °C–30 °C substantially increase the speed of development and regeneration, lead to faster manifestation of RNAi phenotypes, and increase reproduction rate without detectable negative consequences for the animal, while temperatures above 30 °C elicit a heat shock response.ConclusionsWe show that altering temperature conditions can be used to reduce the time required to establish M. lignano cultures, perform RNAi experiments, store important lines, and optimize microinjection procedures for transgenesis. These findings will help to optimize the design of experiments in M. lignano, and thus facilitate future research using this model organism.

Highlights

  • The free-living marine flatworm Macrostomum lignano is a powerful model organism for use in studying mechanisms of regeneration and stem cell regulation due to its combination of biological and experimental properties, including the availability of transgenesis methods, which is unique among flatworm models

  • Changing the temperature has long been used as a method to influence the growth of model organisms, as best seen in the case of C. elegans [28, 29], and recently the role of temperature in the biology of planarian flatworm Schmidtea mediterranea was investigated [30]

  • In this study, we show that simple temperature control can significantly benefit a wide range of experiments using the flatworm model organism Macrostomum lignano

Read more

Summary

Introduction

The free-living marine flatworm Macrostomum lignano is a powerful model organism for use in studying mechanisms of regeneration and stem cell regulation due to its combination of biological and experimental properties, including the availability of transgenesis methods, which is unique among flatworm models. The laid eggs are fertilized, relatively large (100 μm) and follow the archoophoran mode of development [13]; i.e., they have a large, yolk-rich oocyte instead of separate yolk cells that supply a small oocyte. These properties of the eggs make them a good target for delivery of external agents, such as DNA, RNA and protein, by means of microinjection

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call