Abstract

An analysis has been carried out to study heat transfer characteristics of an incompressible Newtonian electrically conducting and heat generating/absorbing fluid having temperature-dependent viscosity over a non-isothermal wedge in the presence of thermal radiation. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The wedge surface is assumed to be permeable so as to allow for possible wall suction or injection. The effects of viscous dissipation, Joule heating, stress work and thermal radiation are included in the model. The governing differential equations are derived and transformed using a non-similarity transformation. The transformed equations are solved numerically by applying a fifth-order Runge–Kutta–Fehlberg scheme with shooting technique. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for the velocity and temperature profiles for a prescribed magnetic field parameter as well as the development of the local skin-friction coefficient and local Nusselt number with the magnetic field and radiation parameters are presented graphically and in tabulated form to elucidate the influence of the various physical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.