Abstract

This research employed a conductometric technique to estimate the inactivation kinetics of Escherichia coli cells in aqueous suspensions (1 wt.%) during simultaneous pulsed electric fields (PEF) and thermal treatments. The electric field strength was E = 5 kV/cm, the effective PEF treatment time t PEF was within 0–0.2 s, the pulse duration t i was 10 − 3 s, the medium temperature was 30–50 °C, and the time of thermal treatment t T was within 0–7000 s. The damage of E. coli was accompanied by cell size decrease and release of intracellular components. The synergy between PEF and thermal treatments on E. coli inactivation was clearly present. The non-ionic surfactant Triton X-100 additionally improved its inactivation. The characteristic damage time followed the Arrhenius law within the temperature range 30–50 °C with activation energies W = 94 ± 2 kJ mol − 1 and W = 103 ± 5 kJ mol − 1 with and without the presence of surfactant, respectively. Relations between cell aggregation, cell ζ-potentials and presence of surfactant were analysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.