Abstract

The occurrence of Aeromonas spp. and hygienic indicator organisms in raw and treated waters of five drinking water production plants in Flanders (Belgium) was surveyed over a period of 17 months. Aeromonads were isolated on ampicillin-dextrin agar (ADA) and further identified by gas-liquid chromatographic analysis of their cellular fatty acid methyl ester (FAME) content. ADA medium was found to be highly specific for the enumeration of Aeromonas spp. In general, Aeromonas counts were very low in untreated groundwater but numbered 10(4)-10(6) colony-forming units per liter in open storage reservoirs for surface water. Aeromonas spp. were seasonally distributed with maximal densities occurring during the summer. The ecology of Aeromonas in the different waters was studied in relation to the physical, chemical, and microbiological water characteristics. Strongly positive correlations were observed between Aeromonas densities and heterotrophic plate counts, whereas a clearly negative relationship was found with dissolved oxygen. On average, 99.7% of the aeromonads were removed by flocculation-decantation followed by breakpoint chlorination, whereas 98.9% were removed by slow sand filtration. Flocculation-decantation without breakpoint chlorination did not reduce the microbial numbers. At three of four drinking water production plants tested, rapid sand filtration decreased the number of aeromonads and hygienic indicator organisms. At one plant, however, the numbers of Aeromonas and hygienic indicator organisms were high in the sand filter effluents. Increased numbers of aeromonads were also counted in the effluent of the activated carbon filters. Hence, inactivation of Aeromonas spp. by the current process technology appears not sufficient to exclude postchlorination. The survival of aeromonads in certain filter systems may be due to the growth of these bacteria on biodegradable organic material, provided by the decomposition from bacteria, algae, or other sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.