Abstract
AbstractThe dielectric properties of DNA solutions at low frequencies (5 Hz to 2 kHz) have been measured by means of a four‐terminal bridge method utilized to minimize electrode polarization errors. At 24°C native salt‐free DNA has a very large specific dielectric increment, Δε/c = 9.8 × 106 l/mol and a very low frequency relaxation centered at 18 Hz. Both the dielectric increment and the relaxation time are greatly decreased by partial heat denaturation at temperatures above 60°C or by addition of salt, the effects being much larger for divalent anions. These results are shown to be in qualitative agreement with theoretical treatments of counterion fluctuation polarization by McTague and Gibbs for the equilibrium case and by Mandel for relaxation. The ratio of the relaxation time for the low‐frequency process to that previously observed at much higher frequencies suggests that these relaxations result from counterion fluctuations along the longitudinal and transverse axes of the molecule, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.