Abstract

Cadaver biomechanical testing suggests that the morphology of articulating bones contributes to the stability of the joints and determines their kinematics; however, there are no studies examining the correlation between bone morphology and kinematics of the subtalar joint. The purpose of this study was to investigate the influence of talar and calcaneal morphology on subtalar kinematics during walking in healthy individuals. Forty ankles (20 healthy subjects, 10 women/10 men) were included. Participants walked at a self-selected pace while synchronized biplane radiographs of the hindfoot were acquired at 100 images per second during stance. Motion of the talus and calcaneus was tracked using a validated volumetric model-based tracking process, and subtalar kinematics were calculated. Talar and calcaneal morphology were evaluated using statistical shape modeling. Pearson correlation coefficients were used to assess the relationship between subtalar kinematics and the morphology features of the talus and calcaneus. This study found that a shallower posterior facet of the talus was correlated with the subtalar joint being in more dorsiflexion, more inversion, and more internal rotation, and higher curvature in the posterior facet was correlated with more inversion and eversion range of motion during stance. In the calcaneus, a gentler slope of the middle facet was correlated with greater subtalar inversion. The morphology of the posterior facet of the talus was found to a primary factor driving multiplanar subtalar joint kinematics during the stance phase of gait. This new knowledge relating form and function in the hindfoot may assist in identifying individuals susceptible to subtalar instability and in improving implant design to achieve desired kinematics after surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call